

Aula de

Bioquímica I

Tema:

Purificação de Proteínas

Prof. Dr. Júlio César Borges

Depto. de Química e Física Molecular – DQFM Instituto de Química de São Carlos – IQSC Universidade de São Paulo – USP E-mail: borgesjc@iqsc.usp.br

Estudos e aplicações biotecnológicas de proteínas → Amostras Puras

Proteínas → Diferentes propriedades = Diferentes formas de isolamento

Considerações Gerais:

Qual é o uso da Proteina?

Qual é o material de partida?

O que deve ser removido da solução?

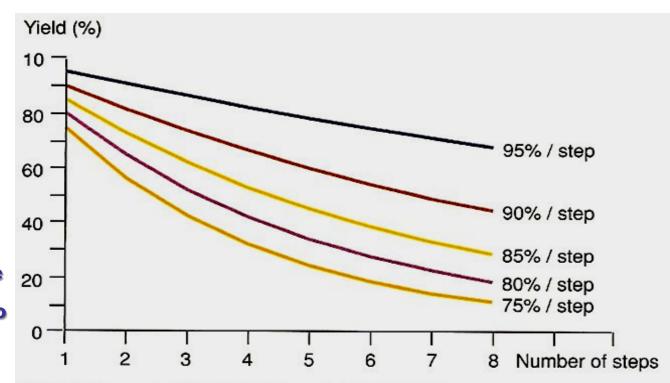
Quais as condições iniciais da solução?

Qual é a estabilidade da proteína?

Qual é a escala de purificação?

Qual é o custo econômico para a purificação?

Etc...



A purificação de proteínas pode ser feita por uma série de etapas e técnicas cromatográficas diferentes que devem obedecer uma sequência lógica.

Preparação, Captura, Transferência, Acondicionamento, etc

Múltiplas etapas ocasiona
perdas inerentes de amostras:
Rendimento

→ Uma purificação eficiente deve ser feita com o mínimo de passos possíveis considerando o uso da proteína e o custo.

Fatores a considerar:

1) Objetivo para pureza

2) Quantidade e Rendimento

3) Manutenção da estrutura

4) Atividade biológica

5) Custo para o processo

- 6) Tempo
- → Obter o máximo de informações sobre as propriedades da proteína alvo e dos contaminantes.
 - → Atividade;
 - → Massa Molecular; <----
 - → Constituição de Aminoácidos ←----
 - → pI teórico;
 - → Coeficiente de absortividade molar <
 - → Estabilidade;
 - → Estado oligomérico;
 - \rightarrow Etc.

Estrutura Primária (cDNA → tradução)

- → ProtParam Toll
 - \rightarrow Sednterp

Purificação: Combinação de técnicas que exploram as diferentes propriedades da proteína-alvo para isolá-la das demais.

ANTES DE COMEÇAR!!!

- 1) Definir objetivos
- → Pureza *versus* uso da proteína alvo
 - → Pureza versus custo
 - → Pureza *versus* tempo
- → Qualidade final da amostra versus custo/tempo

Purity requirement examples	are shown below.			
Extremely high > 99%	Therapeutic use, in vivo studies			
High 95- 99 %	X-ray crystallography and most physico-chemical characterisation methods			
Moderate < 95 %	Antigen for antibody production N-terminal sequencing			

"Over-purification versus under-purification"

2) Definir propriedades do alvo e dos contaminantes

Tais informações guiarão a estratégia a ser montada para atingir os objetivos definidos.

→ Contaminantes

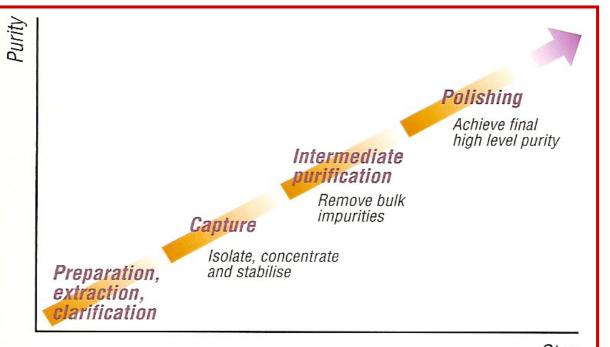
"chave": eliminá-los

primeiro!!!

Sample and target protein properties	Influence on purification strategy		
Temperature stability	Need to work rapidly at lowered temperature		
pH stability	Selection of buffers for extraction and purification Selection of conditions for ion exchange, affinity or reversed phase chromatography		
Organic solvents stability	Selection of conditions for reversed phase chromatography		
Detergent requirement	Consider effects on chromatographic steps and the need for detergent removal. Consider choice of detergent.		
Salt (ionic strength)	Selection of conditions for precipitation techniques, ion exchange and hydrophobic interaction chromatography		
Co-factors for stability or activity	Selection of additives, pH, salts, buffers		
Protease sensitivity	Need for fast removal of proteases or addition of inhibitors		
Sensitivity to metal ions	Need to add EDTA or EGTA to buffers		
Redox sensitivity	Need to add reducing agents		
Molecular weight	Selection of gel filtration media		
Charge properties	Selection of ion exchange conditions		
Biospecific affinity	Selection of ligand for affinity medium		
Post translational modifications	Selection of group-specific affinity medium		
Hydrophobicity	Selection of medium for hydrophobic interaction chromatography		

- 3) Testes de avaliação e/ou acompanhamento do processo
 - → Dependem dos objetivos estabelecidos
 - 1) Testes de atividade biológica
 - Teste enzimático, interação com ligantes, etc
 - 2) Testes para avaliar a pureza
 - Eletroforese em gel de poliacrilamida em presença de SDS
 - 3) Testes de quantificação
 - Depende da origem da proteína
 - 4) Testes para os contaminantes "chave"
 - Idem anteriores
 - 5) Testes estruturais
 - Dicroísmo circular, fluorescência, etc.

Estratégia de 3 fazes de purificação.


Definir objetivos para cada fase!!

→ DEPENDE DAS PROPRIEDADES DO MATERIAL!!!

Captura: isolar, concentrar e estabilizar a proteína alvo

Purificação intermediária: retirar a maior parte das impurezas

Polimento: remover traços de contaminantes

Alta Pureza!

Rapidez!

Baixo Custo!

OBS: Minimizar ao máximo o manuseio da amostra entre as fazes!!!!

Captura

- → Objetivo: Isolar, concentrar e manter atividade
- Principais técnicas cromatográficas: Troca Iônica e Afinidade
 - Resinas de alta Capacidade
 - Separar de contaminantes críticos: DNA, proteases, etc

Purificação intermediária

→ Objetivo: retirar a maior parte das impurezas Separar contaminantes de propriedades similares

Usar técnicas complementares: Troca iônica, afinidade ou interação hidrofóbica

Polimento

→ Objetivo: aumentar a pureza e preparar para armazenamento

Obs: sacrifica e dilui a amostra

Principal técnica: Filtração em Gel - CEM

INÍCIO

PREPARAÇÃO - EXTRAÇÃO - CLARIFICAÇÃO

- → Isolamento inicial da amostra protéica do material de origem;
 - → Lise das células/tecido de origem:
- Lise por Sonicação
- Lise por pressão Trituração do tecido

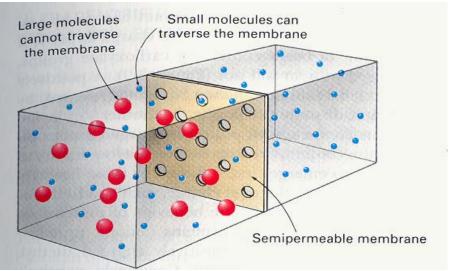
- → Preparação da amostra para as etapas cromatográficas:
 - 1) Adição de aditivos (Detergentes);
 - 2) Ajuste do pH da amostra;
 - 3) Adição de Sais;
 - 4) Centrifugações;
 - 5) Filtrações;
 - 6) Diálises:
 - Etc...

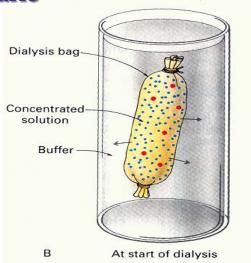
Proteínas: Metodologias de Isolamento

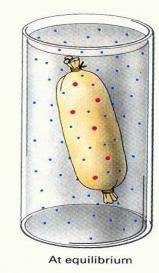
CLARIFICAÇÃO

Centrifugação, Filtração, ultrafiltração e Gel filtração
Ultracentrifugação

Precipitação em sulfato de amônio

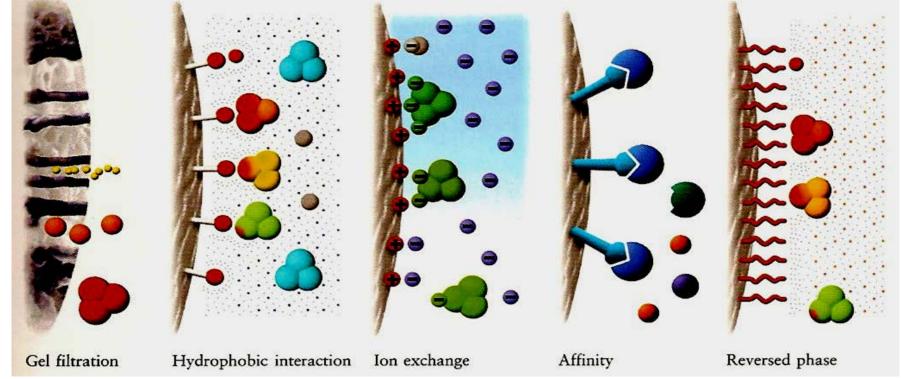

"Salting out" → estrutura da água


Diálise


Separação pela M

Preparação da amostra para etapas subsequentes

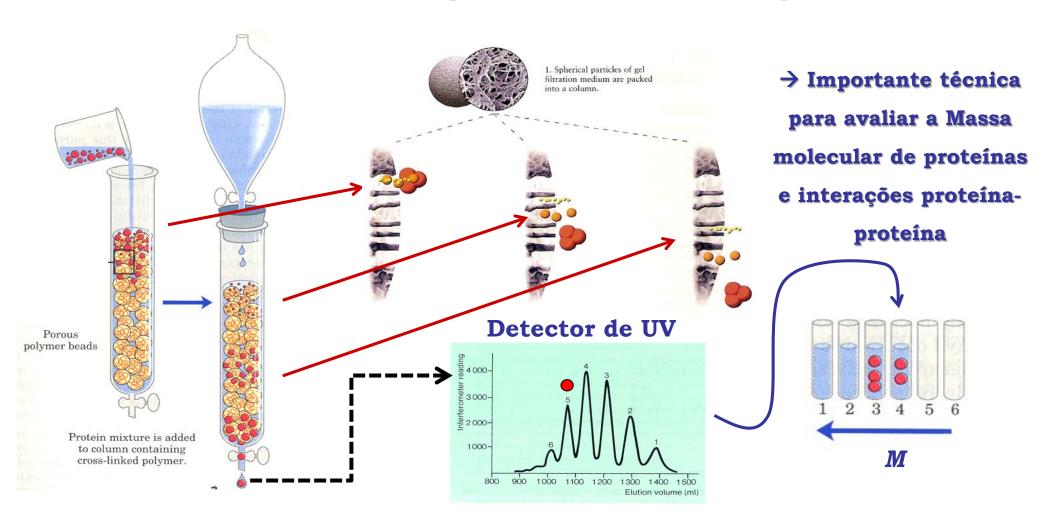
→ Somente se necessário



Métodos Cromatográficos → Separação por características:

Tamanho, solubilidade, carga e afinidade.

Property	Technique Affinity chromatography			
Biorecognition (ligand specificity)				
Charge	Ion exchange chromatography			
Size	Gel filtration (sometimes called size exclusion)			
Hydrophobicity	Hydrophobic interaction chromatography Reversed phase chromatography			



Cromatografia de exclusão molecular

Separação pela Massa Molecular

Proteinas maiores eluem primeiro > Menor caminho a percorrer

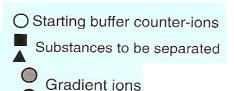
Cromatografia por troca iônica

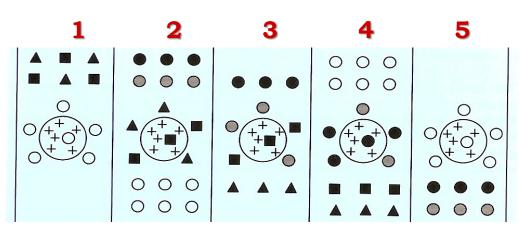
Alia resolução e capacidade

Interação reversivel entre proteinas com cargas opostas à da resina

→ Importante técnica de caracterização e quantificação de proteínas e peptideos

Depende do pI da proteina alvo e do pH da solução


Troca catiônica Resina Aniônica


Separação por aumento da [Sal] ou por mudanças no pH

Cromatografia por troca iônica

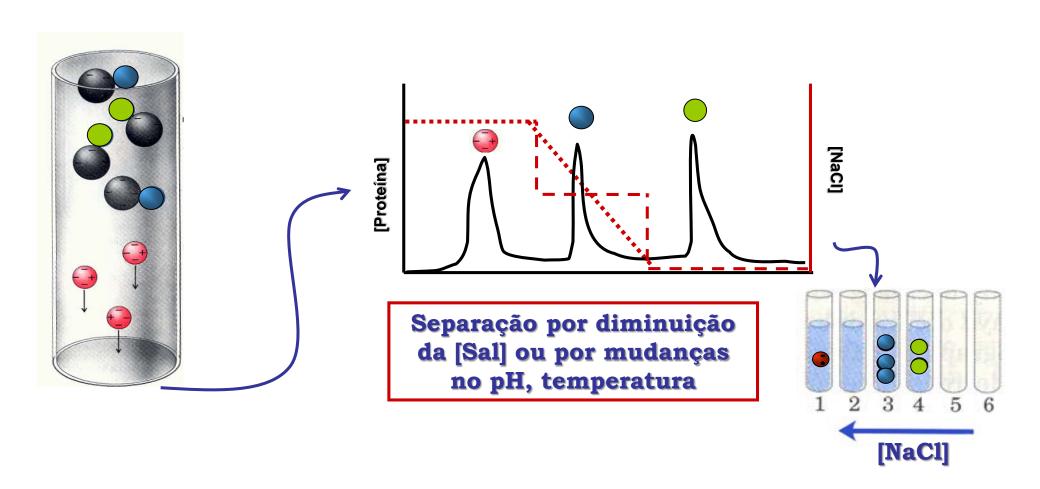

1 = Condições iniciais

2 = Adsorção

3 = Início da Eluição

4 = Término da Eluição

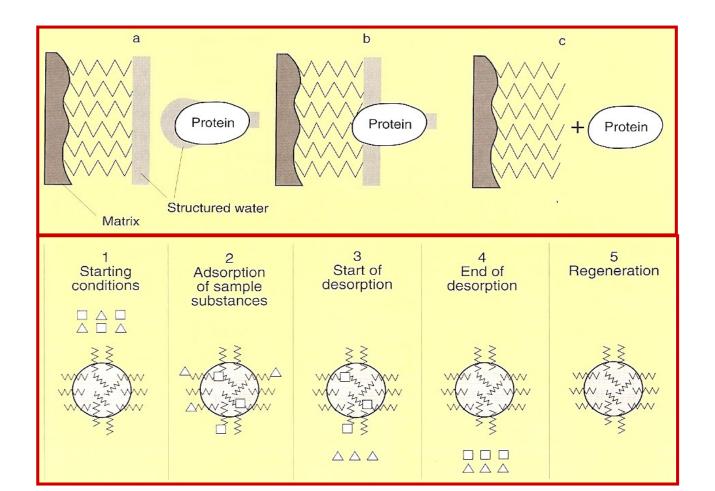
5 = Regeneração



Cromatografia por interação hidrofóbica

Alia resolução e capacidade

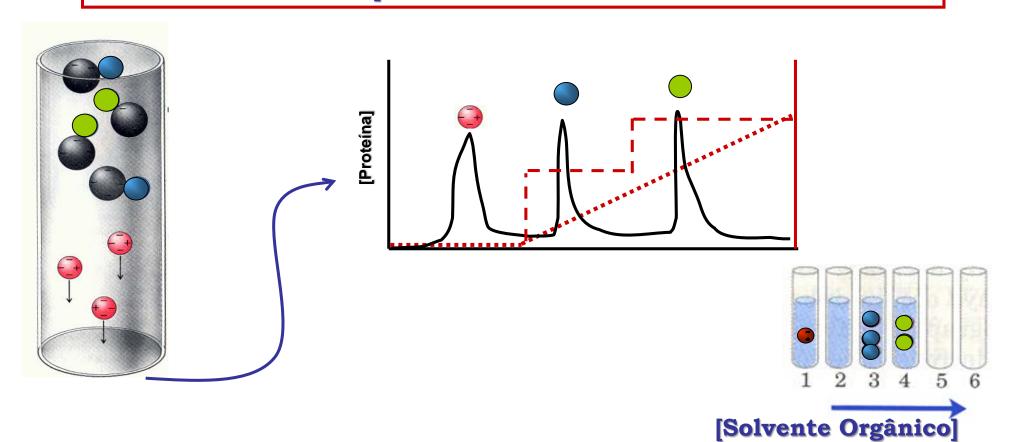
Interação reversível entre proteínas hidrofóbicas com a resina hidrofóbica



Cromatografia por Fase Reversa

Alia resolução e capacidade

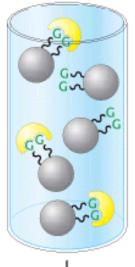
Interação reversível entre proteínas hidrofóbicas com a resina hidrofóbica



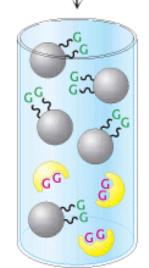
Cromatografia por Fase Reversa

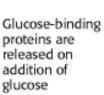
Eluição por solvente orgânico → Pode desnaturar a proteína

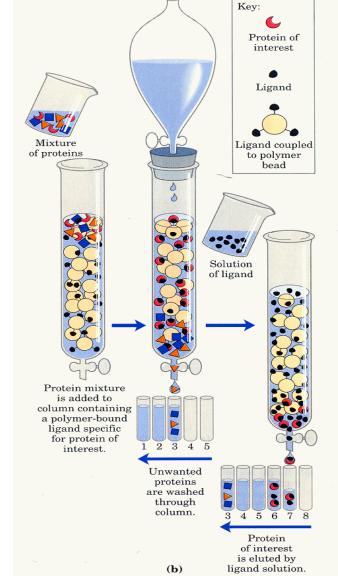
- Comprometimento da Estrutura 3D



Cromatografia de afinidade

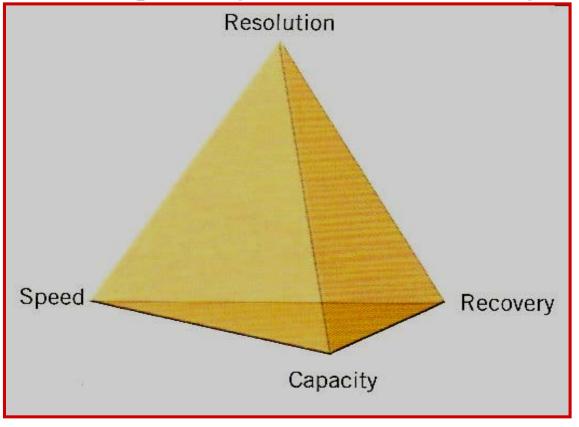

Glucose-binding protein attaches to glucose residues (G) on beads




- → Importante técnica em Tecnologia de DNA Recombinante
 - Isolamento de mRNAs
 - Isolamento de proteínas recombinantes

Addition of glucose (G)

→ Perfil de eluição similar à Troca Iônica



Técnicas de purificação oferecem um balanço entre:

- → Capacidade
- → Velocidade
- → Recuperação
- → Resolução

As técnicas
escolhidas devem
suprir os objetivos
definidos e as
propriedades da
proteína alvo

A Ordem dos

"fatores" influencia

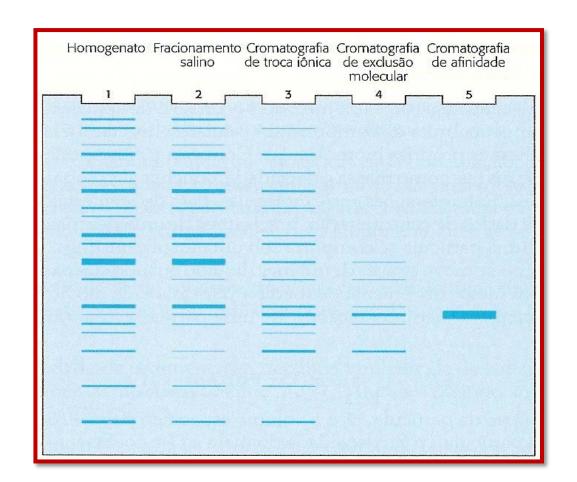
o resultado

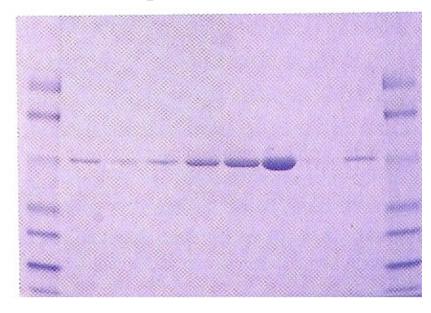
Captura → Capacidade, Velocidade e Recuperação

Purificação intermediária > Capacidade e Resolução

Polimento → Resolução e Recuperação

Comparativo das técnicas cromatográficas versus Etapa

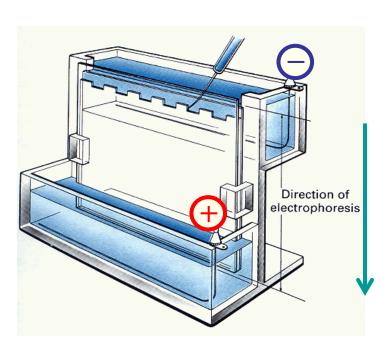

Técnica	Principais Vantagens	Captura	Pur. Inter- mediária	Polimento	Condição da Amostra	
					Início	Final
Troca Iônica	Capacidade Velocidade Resolução	***	***	***	Baixa [Sal]; Sem limite de volume	Alta [Sal] ou mudança de pH; Amostra concentrada
ніс	Resolução, Capacidade Velocidade	**	***	*	Alta [Sal]; Sem limite de volume	Baixa [sal]; Amostra Concentrada
Afinidade	Capacidade Velocidade Resolução	***	***	**	Condições específicas para a ligação; Sem limite de volume	Condições específicas – presença de competidor Amostra Concentrada
CEM	Resolução		*	***	Fluxo e Volume inicial limitado (< 5% VC)	Amostra diluída
Fase Reversa	Resolução		*	***	Requer Solvente Orgânico	Presença de solvente orgânico – Atividade biológica comprometida Amostra Concentrada

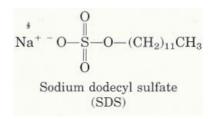


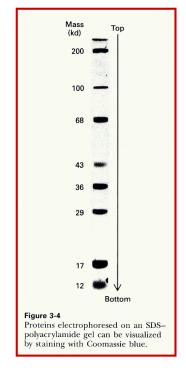
Proteínas: Isolamento e caracterização

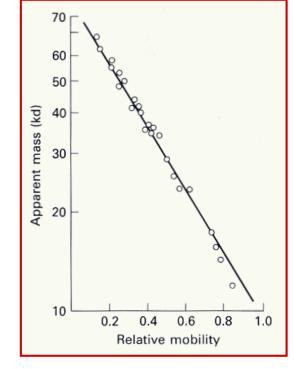
A Eletroforese em gel de poli-acrilamida na presença de dodecil-sulfato de sódio (SDS-PAGE) é o principal método de acompanhamento do processo de Purificação e avaliação do grau de pureza.

Pode requerer concentração da amostra para avaliar o grau de pureza




Proteínas: Isolamento e caracterização


SDS-PAGE


Separação por Massa Molecular

Influência da Z/M e forma da partícula

- 1) Defina claramente os objetivos;
- 2) Avalie as propriedades da proteína alvo e contaminantes;
- 3) Desenvolva métodos de avaliação da atividade ou da estrutura;
 - 4) Minimize o manuseio da amostra;
 - 5) Minimize o uso de aditivos;
 - 6) Remova agentes de degradação;
 - 7) Usar diferentes técnicas em cada etapa;
 - 8) Minimize o número de etapas;
 - 9) Robustez e Reprodutibilidade;
 - 10) Use uma combinação lógica de etapas.

MANTENHA A SIMPLICIDADE!!!